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Being invisible at will has been a long-standing dream for centuries, epitomized by numerous legends; humans
have never stopped their exploration steps to realize this dream. Recent years have witnessed a breakthrough in
this search due to the advent of transformation optics, metamaterials, and metasurfaces. However, the previous
metasurface cloaks typically work in a reflection manner that relies on a high-reflection background, thus limiting
the applications. Here, we propose an easy yet viable approach to realize the transmitted metasurface cloak, just
composed of two planar metasurfaces to hide an object inside, such as a cat. To tackle the hard-to-converge issue
caused by the nonuniqueness phenomenon, we deploy a tandem neural network (T-NN) to efficiently streamline
the inverse design. Once pretrained, the T-NN can work for a customer-desired electromagnetic response in
one single forward computation, saving a great amount of time. Our work opens a new avenue to realize a
transparent invisibility cloak, and the tandem-NN can also inspire the inverse design of other metamaterials
and photonics. © 2021 Chinese Laser Press

https://doi.org/10.1364/PRJ.418445

1. INTRODUCTION

Perhaps no one feels unfamiliar with the possibility of an invis-
ibility cloak, as this long-standing dream has been epitomized
by numerous legends and novels for centuries. To realize this
dream, humans have never stopped their exploration.
Particularly, in the past decades, the advent of metamaterials
and nanotechnology has ignited unprecedented enthusiasm
in realizing manmade cloaks that brings a new twist to the
conventional cloaking community [1–7]. A groundbreaking
proposal of a transformation optics-based cloak renders an ob-
ject invisible by bending the flow of light around it, suppressing
the scattering to be exactly zero [2]. In theory, this method is
perfect; however, in experiment, it is marred by the bulky
material compositions with both anisotropy and inhomogene-
ity [3]. As the two-dimensional (2D) equivalence of metama-
terials, metasurfaces recently have demonstrated their rich
optical properties in providing abrupt phase shift, amplitude
modulation, and polarization conversion of electromagnetic
(EM) waves [8–15]. By covering a deliberately designed meta-
surface over the hidden object, the scattered fields can be

reconstructed as if an incident wave were to impinge onto a
pure background without the hidden object [16–20]. The us-
age of metasurface greatly reduces the thickness and complexity
of invisibility cloaks, but they typically work in a reflection
manner, known as a carpet cloak, and rely on a high-reflection
background as the reference. This dependence limits its
applications.

The transmitted metasurface cloak can properly compensate
for the imperfectness of a reflected metasurface cloak and work
without any background (free-standing invisibility cloak),
i.e., creating an illusion of free space. Therefore, the EM wave
should be either guided around the hidden object or compen-
sated for by lossy/gain media, putting forward a higher require-
ment for the metasurface design. So far, there have been some
proposals about transmitted metasurface cloaks; for example,
Ref. [21] integrated transparent metasurfaces and zero-index
materials together to realize a hybrid invisibility cloak in trans-
mission geometry; Ref. [22] proposed a parity-time symmetric
metasurface with balanced gain and loss to realize a cloak in a
particular direction. These works greatly enrich the transmitted
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metasurface cloak, but they are complicated and cumbersome
in practical implementation. Also, in designing these cloaks, the
key step—metasurface design—conventionally relies on time-
consuming EM numerical simulations, assisted by manual fine-
tuning or optimization algorithms, such as genetic algorithms,
to iteratively approach the demanded optical responses.
Fundamentally, these stochastic algorithms work in a trial-
and-error manner that are limited by their random search
nature [23–30]. Given these factors, albeit challenging, a prac-
tical preferable transmitted metasurface cloak approach and an
intelligent design algorithm have been highly sought after.

In this paper, an easy yet viable approach is proposed to real-
ize the transmitted metasurface cloak, and a tandem neural net-
work (T-NN) to efficiently streamline the inverse design
process is introduced. The transmitted metasurfaces cloak is
composed of two planar metasurfaces to hide an object inside,
such as a cat. Compared with conventional methods, our trans-
parent cloak does not involve any active component, which
greatly simplifies the practical realization. The tandem-NN
is used to address the hard-to-converge issue caused by the non-
uniqueness phenomenon that widely exists in the EM inverse
problem [27]. We collect the simulation data by the finite-
element method analysis software COMSOL Multiphysics
and train the network-NN with the open-source high-level
deep learning application programming interface (API)
Keras, with an accuracy of 86.6% and 86.5% for near and
far fields, respectively. The pretrained T-NN can work for a
customer-desired optical response, e.g., invisibility cloak, in
one single forward computation. Our work provides a new
avenue to realize a transparent cloak, distinct from conventional
reflected metasurface cloaks. Also, the T-NN can inspire the
inverse design of other metadevices [20,31,32].

2. RESULTS

Architecture of the transmitted metasurfaces invisibility
cloak. As schematically shown in Fig. 1, our proposed trans-
mitted metasurface cloak is easy yet viable, just consisting of
two planar metasurfaces, i.e., metasurface 1 (left) and metasur-
face 2 (right). At the top and bottom sides, two perfect electric
conductor (PEC) blocks are arranged to form a closed rectan-
gular box to prevent EM waves from scattering in other direc-
tions. Inside the rectangular box, we assume there is a dielectric
cat model with the relative permittivity of 3.5, which can also
be generally replaced by other objects with different shapes and
materials. For conceptual clarity, we assume the transparent
cloak works for the transverse magnetic (TM) plane wave ex-
cited from the left side and at 8 GHz in two dimensions. Each
metasurface is composed of eight subwavelength metasurface
elements (with a width of 20 mm). Here, to accelerate the sim-
ulation and data collection process, we mimic the metasurface
element by setting a transition boundary condition on the sec-
tion line of its position. A metasurface element is enabled to
provide a continuous local transmitted spectrum shift (0 to 2π)
with unitary transmission. To characterize the cloaking perfor-
mance, we consider both near-field distribution (the out-of-
plane magnetic field inside the rectangle region enclosed by
the green dashed line) and far-field radar cross section (RCS).
By modifying the metasurface properties, the near- and far-field

signatures will change correspondingly. Ideally, after passing
through the layered metasurfaces, the forward and backward
scattering of the incident wave shall be very small, as though
the rectangular box were transparent.

Nonuniqueness issue and T-NN. Evidently, our goal is to
exploit and generalize the intricate inverse relationship between
the near field/far field and the transmitted spectrum of metasur-
face using a deep neural network. However, there is a great chal-
lenge in training the deep neural network because of the
existing nonuniqueness issue in the inverse design. To be spe-
cific, the same EM field response F can be generated by multi-
ple different metasurface arrangements S. As showcased in
Fig. 2(a), two different metasurface arrangements lead to ex-
actly the same far field and near field. This nonunique
F → S will induce conflicting training samples, such as
�F , SA� and �F , SB� in Fig. 2(a). Therefore, in the training pro-
cess, the inverse neural network will encounter the serious hard-
to-converge problem because the buildup data set will inevi-
tably contain some cases having different output labels, but
with the same input.

To overcome this nonunique issue, we deploy a T-NN, as
shown in Fig. 2(b). The T-NN consists of two deep neural
networks, i.e., an inverse neural network (termed NN1) and
a forward neural network (termed NN2). For a customer-de-
sired EM response F , the NN1 will generate a candidate of the
metasurface arrangement S, and then feed S into the NN2 to
predict the EM response F 0. According to the uniqueness prin-
ciple of electromagnetism, for the NN2, each kind of input S

Fig. 1. Schematic of the transmitted metasurface cloak. The trans-
mitted metasurface cloak consists of two planar metasurfaces, labelled
as layer 1 and layer 2, to hide an object inside, such as a cat. Each
metasurface is composed of eight subwavelength metasurface ele-
ments, each of which provides a local transmitted spectrum shift.
To prevent EM waves from scattering in other directions, two
PEC blocks are arranged to form a closed rectangular box. Here,
we consider both near-field distribution (the out-of-plane magnetic
field inside the rectangular region enclosed by the green dashed line)
and far-field radar cross section to characterize the cloaking perfor-
mance. Ideally, after passing through the two-layer metasurfaces,
the forward and backward scattering of the incident wave shall be very
small, as though the rectangular box were transparent.
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will only induce one unique and deterministic output, distinct
from the NN1. The T-NN takes the difference between the
input F and the NN2’s output F 0 to calculate the loss function,
and then iteratively updates the network. Once the T-NN is
well trained, the predicted structural parameter S can be ex-
tracted from the intermediate layer output. In practice, we in-
tend to obtain the metasurface arrangement with a customer-
desired EM field response. Therefore, the T-NN can meet our
practical demand and effectively address the hard-to-converge
problem.

Training and evaluation of the T-NN. Before inversely de-
signing the transparent cloak, we should consider how to build
up the data set, train the T-NN, and evaluate them. To sim-
plify the process, we only consider transmitted phase modula-
tion while keeping the amplitudes uniform and unity (which
can be accessible with current metasurface technology).
Therefore, in our bilayer metasurface system, 16 metasurface
elements correspond to 16 transmitted phases, each of which
can be freely tuned from 0 to 2π, with a minimum precision of
0.01π. The random data of the whole phase distribution are
generated step by step, i.e., we first construct some data seeds
with a larger phase difference, and then use smaller phase differ-
ence to further generate data based on these seeds, so as to ob-
tain better data distribution. The randomly generated structural

parameters are imported into the simulation software, generat-
ing a great number of far-field and near-field data. In total, a
data set with 200,000 samples is built up, among which 70%,
20%, and 10% are used as the training, validation, and test set.

Before training the T-NN, the forward neural network,
i.e., NN2, must be trained in advance, because of the one-
to-one correspondence between the input S and the output
F 0. After optimization, the NN2 architecture is set to have
seven hidden layers for the far field (five hidden layers for near
field), and each layer has 1024 neurons. The input layer has
361 neurons (discretizing the elevation angle 0 − 2π into
361 points) for the far field, and 1024 neurons (converting field
distribution into 16 × 64 image pixel matrix) for the near field.

Figure 3 plots the training results of the NN2, where the loss
function gradually converges, and ultimately, the accuracy at
the test set reaches 85.7% (89.0%) for the far field (near field).
To intuitively show the training performance, we blindly take
three samples from the test set [Fig. 3(c)], and predict the EM
field responses by the pretrained NN2 [green line in Fig. 3(d)].
As a comparison, we also import the input metasurface arrange-
ments into the commercial numerical software COMSOL to
obtain the EM response [ground truth, red line in Fig. 3(d)].
Each group of far-field images in Fig. 3(d) [as well as in
Fig. 4(c)] is processed by a uniform normalization to better

Fig. 2. Nonuniqueness issue addressed by a T-NN in the inverse design. (a) Different metasurface arrangements induce exactly the same near field
and far field, called the nonuniqueness issue. This nonuniqueness issue will make the deep neural network difficult to converge. (b) Schematic of a
T-NN, consisting of an inverse deep neural network (NN1) and a forward deep neural network (NN2). The NN1 has the input of near-/far-field
response and the output of metasurface arrangement (nonuniqueness). In contrast, the NN2 has the input of metasurface arrangement and the
output of near-/far-field response (uniqueness). In the training procedure of the T-NN, the NN2 is pretrained and fixed, and only the NN1 is
updated to reduce the loss function, that is, the difference between the target field response F and the output F 0. Therefore, the metasurface
arrangement S can be extracted from the intermediate layer.
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show the result match. As shown in Figs. 3(d) and 3(e), the
predicted field patterns and the ground truths are highly con-
sistent with each other, laying a foundation for the following
training of the T-NN.

With the successful training of the NN2, we next connect it
to the NN1 to form a complete T-NN [Fig. 2(b)]. After opti-
mizing, the NN1 architecture is set to have eight hidden layers
(seven 1024-neuron layers plus one 512-neuron layer) for the
far field, and five 1024-neuron hidden layers for the near field.
It is worth noting that, in this process, the NN2 is fixed and
does not participate in the parameter updating. The EM field
response F � �f 1, f 2, � � � , f 361� for the far field and
F � �f 1, f 2, � � � , f 1024� for the near field is separately taken
as the input to train the T-NN. As mentioned above, the train-
ing aims to minimize the loss function, defined as the mean
absolute error (MAE) between F and F 0. Figures 4(a)–4(c)
are the training results for the far field, and Figs. 4(d)–4(f )
are the training results for the near field. With the decrease
of the loss function [Fig. 4(a)], the test accuracy achieves
93.2%. We utilize three samples to intuitively demonstrate
the training result. Figure 4(c) exhibits three types of EM field
response. Type 1 is the target RCS [red curve in Fig. 4(c)].
Type 2 is the output EM field response generated by the T-
NN [green curve in Fig. 4(c)], with the intermediate output
metasurface arrangements S in Fig. 4(b). Type 3 is the numeri-
cal simulation of the S from the intermediate layer output [pur-
ple curve in Fig. 4(c)], which is presented as a comparison with
Type 1 and Type 2. The three types of normalized RCS are
drawn with the same coordinates as in Fig. 4(c), which match
well with each other. For the near field [Fig. 4(d)], the loss func-
tion of the T-NN also reduces significantly, and the accuracy of

the test set reaches 92.4%. Similar to the far field, we consider
three samples. The target magnetic fields are plotted in the
upper panel of Fig. 4(f ), the output magnetic fields from
the T-NN are plotted in the middle panel of Fig. 4(f ), and
the simulated magnetic fields are plotted in the lower panel
of Fig. 4(f ). These samples validate that the tandem network
has a strong generality, capable of working for a customer-
desired EM response.

Transparent invisibility cloak designed by the T-NN.
Based on the pretrained T-NN, we progress to utilize bilayer
metasurfaces to realize a transparent invisibility cloak. We input
the target far field and target near field into our T-NN to pre-
dict the metasurface arrangements. After a fast calculation, we
get the desired transmitted phase φ arrangement shown in
Fig. 5(a). Figure 5(b) clearly demonstrates that the RCS is sig-
nificantly reduced in the forward direction when the invisibility
cloak is present, in stark contrast to that without the cloak.
More intuitively, regarding the near-field distribution, our
bared cat-shaped object leads to a strong shadow in Fig. 5(c),
while the scattered field is well reconstructed in Fig. 5(d). This
way, our bilayer metasurface designed by the T-NN is able to
achieve excellent transparency. Whereas our transparent cloak is
specifically designed at 8 GHz, the simulation results show its
working bandwidth ranges from about 7.5 to 9 GHz.

Other functionalities designed by the T-NN. In addition
to the transparent invisibility cloak, the pretrained T-NNmeta-
surfaces can also be used to meet many other user-oriented de-
mands. As an example, we utilize the advances of the T-NN
metasurfaces to mimic the EM characteristic of another
object, for example, a pigeon or seahorse. To reach this goal,
we firstly simulate the pigeon or seahorse model (with a relative

Fig. 3. Training results of the forward deep neural network (NN2). (a) Learning curve of the NN2 for the far field, with an accuracy of 85.7%;
(b) learning curve of the NN2 for the near field, with an accuracy of 89.0%; (c) three metasurface arrangement samples, taken from the test set, to
illustrate the performance of the NN2; (d) normalized RCS predicted by the NN2 and the simulated one obtained by importing the above three
samples into the commercial numerical software COMSOL; (e) near-field distributions predicted by the NN2, and the simulated one obtained by
numerical simulation.
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Fig. 4. Training results of the T-NN. (a) Learning curve of the T-NN for the far field, with an accuracy of 93.2%. To intuitively demonstrate the
T-NN performance, we blindly select three RCS curves in the test set as the inputs [red curve in (c)], and output the metasurface arrangements from
the intermediate layer, as shown in (b). In (c), we also plot the output of the T-NN (green curve), and the simulation result (purple curve) of the
samples in (b). (d) Learning curve of the T-NN for the near field, with an accuracy of 92.4%; similar to the RCS above, we also blindly select three
samples [upper part of (f )] as the inputs, and output the metasurface arrangements from the intermediate layer, as shown in (e). In (f ), the output of
the T-NN [middle part of (f )] and the simulation results [lower part of (f )] are also plotted. Obviously, these three in (f ), as well as those in (c), are
highly consistent with each other.

Fig. 5. Transparent invisibility cloak enabled by the pretrained T-NN. In an ideal case, the scattering of the transparent invisibility cloak should
be zero, which is fed into the pretrained T-NN as the input. As such, we obtain the metasurface arrangements in (a). Based on (a), we obtain the
normalized RCS of the dielectric cat with/without the cloak, as shown in (b). (c) and (d) are the simulated magnetic fields without/with the cloak,
respectively, where the incident plane wave propagates from bottom to top. In (d), the field keeps almost flat after passing though the cloaking device,
in stark contrast to that in (c).
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permittivity of 3.5), and input the simulated far-field response
[red lines in Figs. 6(a) and 6(d)] and near-field response [high-
lighted regions in Figs. 6(b) and 6(e)] into the pretrained T-
NN. Then, according to the output of the T-NN, we resimu-
late the designed bilayer metasurface cloaks, as shown in Fig. 6.
The high consistency between the ground truths and the T-
NN predicted results suggests that our T-NN metasurfaces
are generalized and applicable for different purposes.

3. CONCLUSION

In conclusion, we proposed an easy yet viable approach to real-
izing the transmitted metasurface cloak, and introduced a T-
NN to efficiently streamline the inverse design process. The
transmitted metasurfaces cloak hides a cat-shaped object sand-
wiched between two planar metasurfaces. The T-NN is de-
ployed to address the hard-to-converge issue caused by the
nonuniqueness phenomenon that widely exists in the EM in-
verse problem. Once pretrained, the T-NN can work for a cus-
tomer-desired optical response in one single forward
computation, including an invisibility cloak. Our work opens
a new pathway to realizing a transparent cloak and enables a
variety of other applications [20,33,34].
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